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Abstract. We revisit the constraints on the coefficients of a quantum Markovian equation
recently obtained by Dekker and Valsakumar. We extend these criteria for time-dependent
coefficients and establish further criteria where appropriate phenomenological behaviour is
required such as dissipation and a Boltzmann asymptotic equilibrium state.

1. Introduction

An adequate description of dissipative processes in the context of quantum mechanics is
a highly nontrivial matter. The conceptual difficulties encountered are mostly related to
the fact that canonical quantization is only appropriate for the description of conservative
systems. One important alternative route is via the theory of dynamical semigroups, more
specifically, the constuction of quantum Markovian equations. This important mathematical
tool has found a large number of applications in various domains of physics. However,
we should point out that the matter of deriving a physically reliable master equation is
complicated and delicate even for simple systems, given the many approximations and
hypotheses involved. One scheme frequently adopted is to consider the system of interest
coupled to a thermal reservoir taken to be sufficiently large in order to introduce the
irreversible character of the equation. The dynamics of the subsystem of interest is then
obtained after appropriate contraction of the reservoir’s degrees of freedom is performed,
in addition to the hypothesis of weak coupling and Markovian evolution. The Markovian
equation so obtained takes the form

d

dt
ρ̂(t) = Lρ̂(t) (1)

where the Liouville’s superoperatorL is the generator of a dynamical semigroup, which can
be decomposed in a Hamiltonian part (L0) and a non-Hamiltonian part (D), the dissipator:

Lρ̂(t) = 1

ih̄
[Ĥ , ρ̂(t)] +Dρ̂(t) ≡ (L0+D)ρ̂(t). (2)

In the above equation,̂H denotes a Hamiltonian operator.
It is important to remark that different approximation schemes lead to qualitatively

different master equations. In this context, it is crucial to establish criteria to determine the

† E-mail address: jgfaria@fisica.ufmg.br
‡ E-mail address: carolina@fisica.ufmg.br

0305-4470/98/347095+09$19.50c© 1998 IOP Publishing Ltd 7095



7096 J G Peixoto de Faria and M C Nemes

validity of the approximations used [5]. From the mathematical point of view, Lindblad’s
structural theorem [7, 9, 10] guarantees the preservation of important general properties of
the density operator, such as semidefinite positivity, during all the evolution for any initial
condition. This is guaranteed if the dynamical semigroups generator has the form

Lρ̂ = 1

ih̄
[Ĥ , ρ̂] + 1

2h̄

∑
i

([V̂i ρ̂, V̂
†
i ] + [V̂i , ρ̂V̂

†
i ]) (3)

whereV̂i is an operator of the system of interest. Besides completely positive [7, 10], the
mapping generated by the Liouvillian (3) also preserves the mixtures. These properties
combined are only consistent in the case of weak coupling and hence one hopes to obtain
Lindblad’s form (3) in situations where this limit is verified [14, 15].

The enormous success of the rotating wave approximation (RWA) can be partly
attributed to the fact that it possesses the form prescribed by the structural theorem. It
is, however, easy to find counter-examples of this situation, i.e. then it can be Markovian
master equations which satisfy the form of equation (3) and lead to physically unreasonable
results. In what follows we use as a ‘laboratory’ the very well known model of an
oscillator linearly coupled to a themal bath of harmonic oscillators. In this case if we
chooseV̂1 =

√
2mωλ(2n̄+ 1)x̂ and V̂i = 0 for i > 1, a Lindblad master equation can be

written as

d

dt
ρ̂(t) = 1

ih̄
[Ĥ0, ρ̂] − mω

h̄
(2n̄+ 1)λ[x̂, [x̂, ρ̂]] (4)

wherem, ω denotes the mass and frequency of the main oscillator,n̄ is the average number
of thermal photons andλ is a constant. In the specific case of an oscillator in contact with a
thermal bath, one expects the system to evolve to an equilibrium state. However, the master
equation (4) describes an essentially diffusive process without incorporate dissipation. This
leads to an unlimited growth in the oscillator’s average energy:

〈â†â〉t = 2λt (2n̄+ 1)+ 〈â†â〉0. (5)

It is therefore important to establish criteria, of phenomenological origin, to test the physical
adequacy of the obtained master equation. Next, we shall revise and extend Dekker and
Valsakumar’s criteria for the preservation of the uncertainty relation and introduce the
requirement that an adequate equilibrium state is asymptotically reached. In light of those
criteria we analyse recent results in the literature.

2. Dekker–Valsakumar’s constraints

In [6], Dekker and Valsakumar obtained the conditions to be satisfied by a master equation
for the harmonic oscillator in order for the ‘generalized’ uncertainty

σppσxx − σ 2
px > 1

4h̄
2 (6)

to be preserved at all times and for all initial conditions. Here,σpp = 〈p̂2〉 − 〈p̂〉2,
σxx = 〈x̂2〉 − 〈x̂〉2, σpx = 1

2〈p̂x̂ + x̂p̂〉 − 〈p̂〉〈x̂〉. These conditions are expressed in
terms of constraints among the diffusion and dissipation coefficients of the master equation.
However, in their original work, Dekker and Valsakumar established these constraints for
master equations with time-independent coefficients. As we will verify, the generalization
of these criteria for master equations with time-dependent coefficients is immediate.
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If the coupling between the oscillator and reservoir is linear inx̂ andp̂, the corresponding
master equation can be given generically as [9]

d

dt
ρ̂ = Lρ̂ = 1

ih̄
[Ĥ , ρ̂] − iλ

2h̄
[x̂, {ρ̂, p̂}] + iλ

2h̄
[p̂, {ρ̂, x̂}] − Dpp

h̄2 [x̂, [x̂, ρ̂]]

−Dxx

h̄2 [p̂, [p̂, ρ̂]] + Dpx +Dxp

h̄2 [x̂, [p̂, ρ̂]] (7)

whereĤ is chosen to be of the form

Ĥ = Ĥ0+ µ
2
(p̂x̂ + x̂p̂) = p̂2

2m
+ mω

2

2
x̂2+ µ

2
(p̂x̂ + x̂p̂). (8)

ω an Ĥ0 correspond, respectively, to the frequency and renormalized Hamiltonian of the
oscillator to be described. The coefficientsλ, Dpp, Dxx , Dpx , Dxp, µ andω can be time
dependent.

Note that equation (7) can be rewritten in the form

d

dt
ρ̂ = 1

ih̄
[Ĥ0, ρ̂] − i

2h̄
(λ+ µ)[x̂, {ρ̂, p̂}] + i

2h̄
(λ− µ)[p̂, {ρ̂, x̂}]

−Dpp
h̄2 [x̂, [x̂, ρ̂]] − Dxx

h̄2 [p̂, [p̂, ρ̂]] + Dpx +Dxp

h̄2 [x̂, [p̂, ρ̂]] . (9)

It is a simple matter to check that the master equation originally studied by Dekker and
Valsakumar (equation (1) in [6]) is a particular case of equation (9) withλ = µ.

The worst case occurs for the minimum uncertainty state

σppσxx − σ 2
px = 1

4h̄
2.

If, at a given instant, the ‘generalized’ uncertainty takes the minimum value, we shall have

∂

∂t
(σppσxx − σ 2

px) > 0 (10)

in order to guarantee that relation (6) is satisfied for all times (t > 0). From the equation
of motion for the second moments†

σ̇pp = −2mω2σpx − 2(λ+ µ)σpp + 2Dpp (11a)

σ̇xx = 2

m
σpx − 2(λ− µ)σxx + 2Dxx (11b)

σ̇px = −mω2σxx + 1

m
σpp − 2λσpx + 2Dpx (11c)

we obtain

∂

∂t
(σppσxx − σ 2

px) = −4λ

(
σppσxx − σ 2

px −
h̄2

4

)
+2

(
Dppσxx +Dxxσpp − 2Dpxσpx − h̄

2λ

2

)
. (12)

TakingDpx = Dxp and assuming that uncertainty is minimal, we shall have

Dppσxx +Dxxσpp − 2Dpxσpx − h̄
2λ

2
> 0. (13)

† These equations of motion are easily obtained from the Wigner–Fokker–Planck equation equivalent to master
equation (9).
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If relation (13) is to remain valid independently ofσpp, σxx and σpx , the kinetic
coefficients should obey the following constraints

DxxDpp −D2
px >

h̄2λ2

4
(14a)

Dpp > 0 (14b)

Dxx > 0. (14c)

A simple inspection of expression (13) is enough to show that inequalities (14b) and
(14c) could adopt the least restrictive formDpp > 0 andDxx > 0. The uncertainty
would still be preserved provided the kinetic coefficients satisfy (14a) and the following
inequalities modified as discussed here. There are, however, two situations which are not
taken into account by (14a)–(14c) in the form they were originally established. The first
situation corresponds to the trivial case of unitary evolution, i.e. the dissipation and diffusion
coefficients vanish. The second situation corresponds to the case where only one of diffusion
coefficients,Dpp or Dxx , is zero while the other is positive. In this case, we should have
λ = Dpx = 0 so that inequality (13) is satisfied for any value of the variancesσpp, σxx
andσpx .

2.1. The marginal case

The marginal case is characterized when the equalitiesσppσxx−σ 2
px = 1

4h̄
2 and ∂

∂t
(σppσxx−

σ 2
px) = 0 are simultaneously verified. In order to preserve the uncertainty principle, we

must have

∂2

∂t2
(σppσxx − σ 2

px) > 0. (15)

In this situation, the equality in equations (13) and (14a) is valid and the variances assume
the special values

σpp = Dpp

λ

σxx = Dxx

λ

σpx = Dpx

λ
.

(16)

Deriving expression (12) again, using identities (16) and equations of motion (11a)–(11c),
we obtain

∂2

∂t2
(σppσxx − σ 2

px) =
2

λ

∂

∂t

{
DppDxx −D2

px −
h̄2λ2

4

}
. (17)

Therefore, admittingλ > 0, in order to guarantee that uncertainty principle will not be
violated in the marginal case, the inequality

∂

∂t

{
DppDxx −D2

px −
h̄2λ2

4

}
> 0 (18)

must be verified.
Of course, the equality in equation (18) indicates the necessity to study the higher orders

of time derivatives of(σppσxx − σ 2
px). Note that equation (12) yields

∂n+1

∂tn+1
(σppσxx − σ 2

px) = −4
∂n

∂tn

{
λ

(
σppσxx − σ 2

px −
h̄2

4

)}
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+2
∂n

∂tn

(
Dppσxx +Dxxσpp − 2Dpxσpx − h̄

2λ

2

)
(19)

wheren = 1, 2, . . . . In the marginal case, if all derivatives of order equal to or less thann

vanish, it will be necessary to satisfy the inequality

∂n

∂tn

(
Dppσxx +Dxxσpp − 2Dpxσpx − h̄

2λ

2

)
> 0 (20)

in order to preserve the uncertainty relation.

2.2. Dekker–Valsakumar’s constraints and the structural theorem

As discussed by Šandulescu and Scutaru [9], constraints (14a)–(14c) keep an intimate
connection with Lindblad’s structural theorem. If we restrict the analysis to systems linearly
coupled to the thermal reservoir, the linearly independent operators to be considered are

V̂j = aj p̂ + bj x̂ j = 1, 2 (21)

whereaj andbj (j = 1, 2) are complex constants. Upon substituition into equation (3) and
rearranging terms so that they are in the form of master equation (9), we obtain

Dpp = h̄
2

2∑
j=1

|bj |2 (22)

Dxx = h̄
2

2∑
j=1

|aj |2 (23)

Dpx = Dxp = −h̄
2

Re
2∑

j=1

a∗j bj (24)

λ = Im
2∑

j=1

ajb
∗
j . (25)

It is possible to show that constraint (14a) is verified by definitions (22)–(25) and the
Schwartz inequality [8, 9]. The other constraints (14b), (14c) are only violated in cases
where we havea1 = a2 = 0 and/orb1 = b2 = 0, which corresponds to the two situations
we commented on above, where the uncertainty is preserved although relations (14b), (14c)
are not verified. Therefore, the coefficients of a master equation of type (9) satisfies relations
(14a)–(14c), if it necessarily possesses Lindblad’s canonical form.

However, some physical models and approximations yield master equations with forms
different from Lindblad’s. In these cases, the positivity of the density operator is not
guaranteed for all initial states (see [11–13] and section 4). Hence, it is interesting to
characterize the set of initial states for which positivity is preserved for every master equation
proposed. Following the ideas of Ambegaokar [11], we perform this task in the time-
independent case. Consider the master equation (9) with time-independent coefficients and
suppose that the initial state iŝρ0 = |ψ〉〈ψ |. As a result of trace conservation by equation
(9), we shall impose the condition〈ψ | ˙̂ρ|ψ〉|t=0 6 0 in order to preserve the positivity of̂ρ.
Hence,

〈ψ | ˙̂ρ|ψ〉|t=0 = iλ

h̄
〈p̂x̂ − x̂p̂〉0− 2Dpp

h̄2 σxx(0)− 2Dxx

h̄2 σpp(0)+ 4Dpx
h̄2 σpx(0) 6 0
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yields

Dppσxx(0)+Dxxσpp(0)− 2Dpxσpx(0)− h̄
2λ

2
> 0. (26)

The set of initial statistical operators that preserve the positivity is characterized by the class
of states for which the second momentsσxx(0), σpp(0) and σpx(0) verify the inequality
(26). This inequality is equivalent to the fundamental inequality (13) with time-independent
coefficients, therefore the initial states which preserve the positivity also preserve the
‘generalized’ uncertainty principle (6).

3. Stationarity of the Gibbs equilibrium state

3.1. The time-independent case

If the kinetic coefficients in equation (9) are constants, one may expect some tendency to
equilibrium to occur. In the particular case of equation (4), the equilibrium state does not
exist since this equation describes a purely diffusive process. Equation (4) illustrates one of
two situations previously mentioned in section 2 for which constraints (14b) and/or (14c) are
violated but the uncertainty principle is still preserved. Actually, the diffusion coefficient
Dpp is positive while the other coefficients vanish.

Dissipation and diffusion are fundamental processes in what concerns the dynamics of
a quantum system coupled to the thermal bath and one cannot exist without the other, if
physically consistent results are required. In fact, if dissipation is eliminated (λ = 0) the
reservoir fluctuating forces will transfer energies into the system in an unlimited way. On
the other hand, if we eliminated diffusion ((14a), (14b) or (14c) not satisfied) the system can
eventually occupy a volume in phase space which is forbidden by the uncertainty principle
and violate it [8, 9].

3.2. Conditions for stationarity of the Gibbs state

We now proceed to investigate whether the constraints just derived are enough to guarantee
that the system will reach an asymptotic equilibrium (Gibbs) state of the form

ρ̂eq = e−βĤ0

tr e−βĤ0
(27)

whereβ = 1
kBT

, kB denotes the Boltzmann constant,T is the reservoir temperature and̂H0 is
the renormalized Hamiltonian of the system. Considering this state, the master equation (9)
and imposing the equilibrium condition

Lρ̂eq = 0 (28)

we obtain

Dpx = −Dxp (29)

Dpp = mh̄ω

2
(2n̄+ 1)(λ+ µ) (30)

Dxx = h̄

2mω
(2n̄+ 1)(λ− µ). (31)

Expressions (29)–(31) establish the relations that the kinetic coefficients and parametersµ

and ω must satisfy so that the state given in (27) is an equilibrium state of the master
equation in question. These relations are strict correspondence with equalities (5.4) of [8].
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Combining equations (30) and (31) with inequalities (14b) and (14c) and consideringλ > 0
we obtain a restriction on the friction coefficient so that the master equation (9) verifies
both the stationarity condition and the uncertainty condition:

λ > |µ|.
On the other hand, if we combine relations (29)–(31) with inequality (14a) we can determine
the minimum value for the dissipation coefficient:

λmin = |µ|√
1− 1

(2n̄+1)2

. (32)

This relation determines the minimum value that the dissipation coefficient can have
in order for the solution to preserve the uncertainty relation and futhermore reach the
appropriate stationary state asymptotically. It is interesting to note that, for example, the
master equation originally studied by Dekker and Valsakumar cannot simultaneously verify
the stationary condition and preserve the generalized uncertainty for any finite temperature.
As discussed by Lindblad [8], the equations of motion for the observables of the system of
interest generated by a master equation of the type (9) maintain a close analogy to those of
the classical Brownian motion if the conditionλ = µ is verified. However, relation (32)
shows that, in this case, the equipartition and structural theorem are only compatible in the
limit T →∞.

4. An application: limits of validity for the non-RWA master equation

Despite the success obtained by the RWA master equation, its application is limited to those
systems where the ratio between the dissipation coefficient and the natural frequency is
λ
ω
� 1. In quantum optics, this situation occurs when systems with largely spaced energy

levels are weakly coupled to the set of modes of the electromagnetic field. However, if we
regard systems which are strongly damped, with quasidegenarate or closely spaced energy
levels, the use of the RWA master equation becomes inadequate, since it can yield incorrect
results [13].

There are several methods which do not employ the RWA [1–4]. They independently
lead to the following master equation for a Brownian particle coupled to a thermal reservoir
at temperatureT

d

dt
ρ̂ = − i

h̄
[Ĥ0, ρ̂] − iλ

h̄
[x̂, {ρ̂, p̂}] − 2mλ

βh̄2 [x̂, [x̂, ρ̂]] . (33)

This expression is a particular form of the master equation (9) withµ = λ, Dpp = 2mλ
β

and
Dpx = Dxp = Dxx = 0, in the limit of high enough temperatures. Munro and Gardiner
[13] baptized this equation the ‘non-rotating-wave (NRW) master equation’.

The first important thing to be noticed about the NRW master equation is that it
does not possess Lindblad’s structural form. This means, in particular, that the density
operator obtained from it will not preserve the semidefinite positivity condition for a certain
class of initial states (see [11–13] and references therein). Substituting the coefficients of
equation (33) into inequality (26), we obtain the following restriction on the initial states to
be observed in the NRW master equation

σxx >
βh̄2

4m
. (34)
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Sinceσxx represents the uncertainty in position inequality (34) determines the minimum
value of dispersion that the variablêx should have in order for the positivity (and the
‘generalized’ uncertainty principle) to be preserved in time.

Although the anomalous behaviour of the NRW master equation is present even in
the case of the harmonic oscillator, it is interesting to note that equation (33) satisfies the
stationarity condition, since relations (29)–(31) are verified. This anomalous behaviour of
the NRW equation has led some authors to propose modifications in the equation to remove
the problem. Among the proposed modifications, we discuss the one which suggests the
addition of new terms to the original equation in order to cast it into Lindblad’s form
[12, 11]. A term of type

−κλβ
8m

[p̂, [p̂, ρ̂]]

is added to equation (33). Ifκ > 1, this new term will bring the equation into the form
of the structural theorem, thus saving the positivity and the uncertainty principle. There is,
however, a consequence of thead hoc inclusion of this term: the appropriate equilibrium
(Gibbs) state (27) leaves to be the asymptotic state.

5. Conclusion

In this work, we have discussed the importance of the phenomenological criteria in the
study of Markovian master equations. Using the harmonic oscillator as a ‘laboratory’, we
explored two of these criteria. The first criterion refers to Dekker–Valsakumar’s constraints
[6], which establish the relations among the kinetic coefficients of a master equation in
order to preserve the uncertainty principle. We extended this criterion for master equations
with time-dependent coefficients.

Dekker–Valsakumar’s constraints are closely related to Lindblad’s structural theorem [9],
also the preservation of positivity is related to the preservation of ‘generalized’ uncertainty.
This relation was ilustrated in the particular case of the NRW master equation. Actually, the
set of initial states which preserve the positivity of the density operator and the uncertainty
principle is subject to the same restriction.

The second criteria refers to the stationarity of the equilibrium state. We established
the relations that the kinetic coefficients must satisfy in order for the Gibbs state (27) to be
stationary. As an example of applications, we verified that the modification proposed by
some authors [12, 11] in order for the NRW master equation to take the Lindblad’s form
leads to the violation of the stationarity of the Gibbs equilibrium state.
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